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Abstract

This paper proposes a rational method to approximate a plane elastic body through a latticed structure composed of
truss elements. The method is based on the introduction of a relaxed stress energy that allows an extension of the
original problem to a larger space of admissible stress fields, including stresses concentrated along lines. Use is made of
polyhedral approximations of the Airy stress function. The truss analogy is employed to obtain a displacement for-
mulation. The paper includes several numerical applications of the method to sample problems, a numerical conver-
gence study and comparisons with exact solutions and standard finite element approximations.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This work presents a new numerical method for plane elastic problems (lumped stress method or LSM),
which can be thought of as a rational technique for modeling a plane body through a network of truss
elements. Fundamentally this approach was inspired by the lumped strain method for isotropic Kirchhoff
plates of Davini and Pitacco (1998, 2000), which is extended here to treat Airy’s formulation of anisotropic
plane elasticity.

The approximation of a continuum medium with an “equivalent™ truss structure is often sought in
technical applications. For example, it is common practice for structural engineers to employ truss analo-
gies for modeling reinforced concrete and masonry members, as the Morsch-mechanism of shear resis-
tance in r.c. beams, funicular polygons, network models, and the recent strut-and-tie methods.

This type of modeling is frequently motivated by one of the following: coupling of 2D or 3D elements
(like panels, walls, deep beams, etc.) with effective networks of 1D elements (frames, trusses, etc.); use of
stress resultant and moments in technical codes; and a significantly simplified treatment of plasticity and
no-tension constraints.
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Several procedures using equivalence methods or minimization of suitable objective functions are
available in the literature (see, e.g., Absi, 1978; Papadopoulos, 1984; Schlaich and Schafer, 1991; Biondini
et al., 1999; O’'Dwyer, 1999). A serious concern is the choice of a correct network in the case of complicated
loadings or member geometries. In most cases, bar elements must be placed along the principal directions of
stress and the convergence of the numerical approximations, if available, is valid for a particular load
condition and/or for particular material properties. Nevertheless, in recent years, the advances in interactive
computer graphics have considerably increased the utility of methods like strut-and-tie (Alshegeir and
Ramirez, 1992; Mish, 1994), that are beginning to be considered by several technical codes (as ACI and
AASHTO) as useful tools in the design of structural concrete members.

Opposing approaches have also been proposed and widely used in the past for coupled shear walls, shear
walls interacting with frames, multi-beam bridges and other systems (Rosman-Beck, Massonet-Bares and
similar models). Recently, the homogenization theory, evolutionary and genetic algorithms have been used
to design an optimal truss over a given reference domain (see, e.g., Hajela and Lee, 1995; Bendsge and
Kikuchi, 1998; Ohsaki, 1998; Moreau, 1998; Bulman et al., 2001).

The LSM views the transition from a continuum to a structure as an extension of the continuous
equilibrium problem to a larger space of test functions for the stress field. In fact, the stress “runs’ along
preferential lines (or surfaces) in a structural network and such singularities are ‘“‘non-conforming” for the
continuous problem, in a sense that give rise to infinite stress energy.

In the LSM, a plane body Q is discretized through two complementary meshes: a primal mesh consisting
of a triangulation of Q; and a dual mesh formed by polygons encircling the nodes of the primal mesh. The
skeleton of the primal mesh is used to approximate the stress field through uniaxial singular stresses, while
the dual mesh is used to average such singularities in the neighborhood of each primal node. In this way the
final description of the stress field is piecewise constant.

Approximate solutions of the 2D problem are found by minimizing a relaxed complementary energy
functional &, depending on the mesh size /s, whose quadratic part (stress energy) is obtained through
square integration of the piecewise constant stress.

The result of the approximation is simple from a physical point of view: the body is approximated by a
non-conventional truss structure 4, having the same topology as the skeleton of the primal mesh and the
complementary energy (&) as defined per dual elements (i.e., per nodes) and not per bar elements.

Moving on to examine the case of a 3D body, the proposed methodology can be naturally widened by
dividing the body into a collection of tetrahedra (primal mesh) and representing the stress field through
stresses concentrated over planes (the facets of the tetrahedra). In this way, the body is approximated by a
network of shell elements (description of a 3D body by a collection of 2D elements). A relaxed energy can be
defined averaging the singular stresses over polyhedra (dual elements) which surround the vertices of primal
elements. Alternatively, one can imagine representing the 3D stress field by linear concentrated stresses,
arriving at a modeling of the body through a spatial truss structure (1D elements).

The mathematical formulation of the LSM is obtained when the Airy stress function ¢ is introduced.
Indeed, a distribution of balanced singular stresses can be generated from a piecewise linear approximation
¢ of the Airy function, whose graph forms a polyhedral surface. Each singular stress corresponds with a
fold of this surface; in particular, convex and concave folds generate tensile and compressive stresses, re-
spectively. The piecewise constant approximation of the stress field corresponds with a discrete notion of
the Hessian tensor of @.

The LSM falls within the framework of mixed approximation methods for fourth-order partial differ-
ential equations, extensively studied by Glowinski (1973), Ciarlet and Raviart (1974, 1978), and several
other authors (see Scholtz, 1978, 1979; Brezzi and Fortin, 1991; Oden and Carey, 1983b; Balasundaram and
Bhattacharyya, 1986), mainly referring to the biharmonic equation.

In a recent work (Fraternali, 2001), we have deduced the LSM convergence order in the case of traction
problems, accounting for the more general fourth-order problem of anisotropic plane elasticity (Airy’s
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formulation). This significant result has been deduced on assuming suitable hypotheses on the topology of
the mesh, which are not necessary in the biharmonic case (isotropic elasticity).

Here we expand the LSM stress function formulation (SFF) to cover problems with mixed boundary
conditions. Furthermore, we employ the truss analogy to come up with a displacement formulation, which
is applicable to multiple-connected bodies. Finally, we assess the convergence of the method through nu-
merical experiments, establishing comparisons with analytic solutions and standard finite element ap-
proximations. We also discuss some interesting numerical properties of the LSM, and especially its
accuracy in predicting the stress field, even with relatively coarse meshes and tricky singular loads. A
generalization of the method to treat plastic and/or no-tension materials will be developed in proceeding
works.

2. Mathematical setting of the lumped stress method
2.1. Airy’s formulation of a traction problem of plane elasticity

Consider the elastic problem of a plane body occupying a bounded and simply connected open region Q2
of the two-dimensional Euclidean space. For the sake of simplicity, assume that Q is a polygonal set and
initially suppose that its boundary I' is completely free of kinematical constraints (traction problem).

Let the body be subjected to body forces b in Q, surface tractions p over I' and to a field E of externally
imposed infinitesimal strains (initial strains), due e.g., to thermal effects. In particular, assume that a stress
field T* which is in equilibrium with the load (b, p) is known, i.e., a T* such that its divergence divT" exists
in Q and it results divT*+b =0 in Q, T'i = p over I', i being the outward unit normal to I

Finally, let {0,x;,x,} denote a Cartesian coordinate system in the plane of Q with unit base vectors
{ei,&;}, and use the comma followed by an index, say ““(-) ,”, to indicate differentiation with respect to x;
and x,. Let also greek indices range over {1, 2}, and adopt the summation convention over repeated indices.

Upon introducing a class of scalar functions ¢ on Q (A4iry’s stress functions, see e.g., Gurtin, 1972) such
that

=0 and 2—3:00n1“, (1)

a generic stress field T, in equilibrium with the load (b, p), can be expressed as follows
T=T +WHeW". 2)

Here, Hp = ¢ ,4€, ® €; is the Hessian tensor associated with ¢, and W is the skew tensor defined as
W = ¢, e, ® &g, e, indicating two-dimensional alternator and ® the symbol of tensor product between
vectors.

Denote A the fourth-order compliance tensor of the material with components A,4,5, and o/ the trans-
formed compliance tensor of components

&{aﬂy(ﬁ = ea;teﬂve*,'peéaAuvpm (3)

The solution T, of the elastic problem is characterized by the stress function ¢, which satisfies the
compatibility equation

(L apysP 35)oup = [ 10 €2, (4)

where

[ = —ewep (Eap + AupposTy5) - (5)
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In the particular case of an homogeneous isotropic material, Eq. (4) reduces to the biharmonic equation

AAg = f, (6)
where A is the Laplacian operator, and
f = —eweps(EE,p, + Tyy.;) + vdivh, (7)

FE and v being the Young’s modulus and the Poisson’s ratio of the material, respectively.

Now, let W*?(Q) denote the Solobev space of functions with generalized L7(Q) integrable derivatives
upto the kth order, set H*(Q) = W**(Q), and denote H *(Q) the dual of H(Q) = {p € H"(Q)/p =
0 on I'} (cf., e.g., Adams, 1975).

Assume that E and T* belong to H'(Q), which implies f € H~'(Q) ¢ H%(Q), and that the compliance
tensor of the material is positive definite.

A variational formulation of the problem defined by the differential equation (4) and the boundary
conditions (1) is the following

Find ¢, € H(Q2) such that

Slo0) = _inf (o). g
where
1
5(p) =5 [ Ho-o/[Holda I(o). 9)
Z(QD) = <f, (P>H*2‘ HY> (10)

()2, 2 denoting the duality pairing between H “2(Q) and H(Q).
2.2. Mixed approach

A mixed approach to (4), (1) consists in splitting Eq. (4) into two second-order equations. That is,

lpocﬁ = _(p,zx/} :

(Ao W) ap = =S } n £, (11)
where § =V, 5e, ® e; is an intermediate (or dual) variable, which coincides with the opposite of (T —T")
under double permutation of indices.

Such an approach is convenient in developing variational approximations of the boundary value
problem, since it allows the use of C° test functions for ¢, while the originary fourth-order equation calls for
C' test functions. Obviously, a suitable approximation space for the new variable ¥ must also be defined. In
particular, by using (CO)4 test functions, one is led to a conforming (or internal) approximation of the mixed
problem. Notice that y is a tensor field, while the primal variable ¢ is a scalar field.

We have seen in the previous section that, for isotropic elastic bodies, Eq. (4) reduces to Eq. (6). A mixed
formulation of (6) is the following

v=-Ap | .
Alﬁ:—f}mg' (12)

Thus, in the isotropic case, both the primary and the dual variable are scalar fields. This point marks an
essential difference between mixed approaches to biharmonic and more general fourth-order problems. A
similar circumstance arises in the context of the equilibrium problem of elastic Kirchhoff plates (isotropic
and anisotropic behavior).
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The LSM presented in Section 2.3 extends to problem (11) the mixed method proposed by Davini and
Pitacco (1998, 2000) for problem (12). We shall see that the adopted choice of the approximation spaces
allows us to eliminate the dual variable from the discrete scheme, thus reducing it to an unconstrained
minimization problem.

Remark. External mixed approximations to biharmonic problems were formerly studied by Glowinski
(1973), who proved their convergence using direct arguments. Successively, several other authors, and
particularly Ciarlet and Raviart (1974, 1978), studied mixed numerical approaches to the biharmonic
equation using a systematic theory, coming to detailed error estimates. They examined approximations with
piecewise polynomials of order £ > 2, for both the primal and the dual variable, over regular triangular
meshes. Scholtz (1978, 1979) deduced similar results for piecewise linear polynomials. A generalization of
the mixed method by Ciarlet and Raviart can be found in Balasundaram and Bhattacharyya (1986). More
recently, Davini and Pitacco (1998, 2000) have resumed Glowinski’s method in detail, assuming piecewise
linear approximations for the primal variable (¢ in our notation) and piecewise constant approximations
for the dual variable ().

2.3. The lumped stress method

A variational formulation of the mixed problem (1) and (11) is the following
Find (¢, ¥,) € 7~ such that

F((pobo)) = int | F((0.0)) (13)
where
1
F((o.0) =5 [ - SWlda— (0. ), (14
(. 9) = 4 O,y (15)
¥ = (o) € HY(Q) (@) B((o. ). 0) =0, Va e (H'(@)'} (16)

In (16), B((-,-),-) denotes the continuous bilinear form defined by
V(p,¥) € H'(Q) x (L*(Q))", Vae (H'(Q)": (0, ¥),q) = /qua -divgqda — /Ql//~qda~ (17)

Notice that the variational equation B((¢,y),q) =0, Vq € (H'(Q))*, implies that ¥ = —Hg, with
¢ € H*(Q) N H}(Q), and d¢p/dn = 0 over I (see Balasundaram and Bhattacharyya, 1986; Fraternali, 2001).

Now, consider a family of triangulations IT, = {Q,, ..., 2y} of Q which are regular in the sense defined
by Ciarlet (1978), h = sup,,c(;__,;{diam(£2,)} denoting the mesh size.
Associate a dual mesh II,, = {f?l, cey f)N} to each triangulation I1,, formed by N polygons, N being the

number of nodes of II,. The vertices of the generic polygon 2, coincide with the middle points of the edges
of IT, that converge at the node x,,, and with selected points in the interior of each triangles adjacent to x,
(Fig. 1).

Introduce also an extension II, of II, outside €, obtained by adding a strip of external triangles, as
shown in Fig. 1. In the following, @ denotes the open region covered by IT,, and N’ the number of nodes of
I,



6216 F. Fraternali et al. | International Journal of Solids and Structures 39 (2002) 6211-6240

Fig. 1. Primal and dual meshes.

For a given mesh size A, we let S;, and 7, denote the space of piecewise linear scalar functions ¢ defined
over IT} (polyhedral stress functions), and the space of piecewise constant tensor-valued functions 1/; defined
over the dual mesh IT,, respectively. In particular, we put Sp, = {¢ € S,/¢ =0 on Q' \ Q}.
function space and are such that g;(x;) = d;;, Vj € {1,.. ., N’}. Clearly, the support of g; consists of the
union G; of the triangles which are adjacent to x;.

We call LSM the following approximation of problem (13).

Find (¢,, ¥,) € #", such that

F (G5 ¥,)) = min F((3,9)), (18)
(@)W
with
W= {(®,%) € S x T/B($.¥),@) =0, Vqe T}, (19)

In the definition (19), B((, -),-) is the following approximation of the bilinear form (17)
WO.9) €5 x T Va € Ty: f(@9).0) = [ Vo -divas@da— [ §-ada (20)
Q Q
where 9,(q) is a piecewise linear function in (S;)*.

It is defined in the following way: if q = Z;VZI q(n)y, is in T,,q(n) being the value of q over Q, and 1, the
characteristic function of Q,, then 9,(q) is the function in (S,)* such that
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U(@)(x,) = d(n), Vne{l,....N}; 9,(q) =0 on 0Q. (21)
It is possible to show (Fraternali, 2001) that the couples (@, 1/7) of the space ¥, are such that

v=-Hp=- ZH ) (22)
n=I
where H,, ¢ is the discrete hessian of ¢ defined through
. | P
(tho(n))az/ﬁ :@<(p,x/hgn>H*1,H&7 Vn € {L?N} (23)

The second derivatives ¢ ,; are concentrated along the skeleton of the primal mesh. Indeed, say h the
unit normal to the generic inner edge I of II;, and put 0¢/0h =V ¢ - h (¢ € Son). A generalized second
derivative 0@ /0h* can be defined along I, as a linear Dirac delta. It’s amplitude is equal to the jump
[[0®/0h]], of 0@ /0h across I'.

From (23), one can easily deduce that H, ¢ (n) coincides with the mean value of the generalized Hessian
H® over the polygon Q,, for each inner element of the dual mesh.

A similar result can be cited regarding dual elements associated with boundary nodes of IT;, at the limit
as the distance from I’ to the external nodes approaches zero (penalization of the boundary condition
0p/on = 0).

Eq. (23) can also be written as

N 1 ~ .
H,p = —A—/qu ® Vg,da, (24)
|2, Je
and it results |Q,| = Jo8,da, Vne {1,... N}.

Introducing Eq. (22) into (14), we are led to the unconstrained problem
Find ¢, € Sp, such that

£4(®,) = min 6,(), 25)
@ ESon
with
1 N N N
619) =5 [ W /M,5)da— 1(5); (26)
Q
W(B) = 91y (1)

We refer to &,(-) as a relaxation of &(-) from HZ(Q) to Sp.

We have recently proved convergence of the sequence {(¢,,, 1// )} to the weak solution (¢,, —Hg,) of the
continuous problem (Fraternali, 2001). R

We assumed that IT, is regular in the sense of Ciarlet, IT, is formed by polygons with vertices at the
centroids of primal elements (barycentric dual mesh), and II, has a structured core.

Concerning this last issue, we say that a node x,, satisfies the property (#y) if, given an arbitrary tensor H
(independent of position), it results

> / (H(x - X)) - (x - X))V, ® Vg, = 0, (28)

where X, is set of nodes of the primal mesh that share a triangle with x,,.
Such a geometrical property expands upon a similar one formulated by Glowinski (1973). It is not
difficult to verify that it holds, for example, when G, has one of the shapes shown in Fig. 2.



6218 F. Fraternali et al. | International Journal of Solids and Structures 39 (2002) 6211-6240

/ 1 —_
_ X
v . b,
/ /
/ n ’ -
< <
: b,
>/
/
[ a4 I a2 |
\ \ \
a,=a, and/or b =b,
7
/
/A
.17 . b
)V/ > -
/ 7
7 7/
n
a a a a a a

Fig. 2. Examples of nodes satisfying the (2y) property.

Now, let |©2,, | denote the sum of the areas of the elements of i » that contain nodes of II, satisfying the
(25) property, and set |Q;,| = |Q| — |2, |. Assume that

(i) the meshes {(I1,,II,)} are regular in the sense of Ciarlet;
(i1) the dual meshes I, are barycentric;
(iii) |24,| — 0as h — 0;
(iv) ¢, belongs to the Sobolev space H*(Q) N W*>(Q) N HZ(Q).

Under the above assumptions, we have deduced the following error estimate

e = loy = @4l + [Hoy — Hi@yllg < cihll@olls o + c2h' [, (29)

where || - ||, denotes the usual norm in H*(Q); | - |, the seminorm in H'(Q); || - ||;,, the norm in W**(Q);
and ¢, ¢, are constants independent of ¢, and /. '

In particular, when (iii) and (iv) are replaced by |Q,,|<ch* (with ¢ independent of h) and
Py € WH=(Q) N H(Q), respectively, we have proved that there exists a constant ¢ independent of ¢, and &
such that

en < chl[@olls - (30)

The estimate (29) is useful when the core of II, is formed by nodes satisfying the (#5) property, and the
nodes that do verify such a property are confined to a strip adjacent to the boundary of Q (see, e.g., Fig. 1).
Indeed, in this case, |€,] is of O(k). ~

The estimate (30) is instead useful when Q coincides with a rectangular region and the meshes {(I1,, II,)}
are generated by structured grids of nodes. In such a situation, all the nodes of I, satisfy the (#s) property,
with exception to the four corner nodes, and thus |, is of O(h?).

Notice that the above error estimates do not imply any particular hypothesis about the orientation of the
primal mesh.
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2.4. The general case with mixed boundary conditions

Let us now consider the case in which the boundary I" can be divided into a free part, I',, and a con-
strained part, I', = I' \ I',, where given displacements u € C°(I’,) are prescribed.

From now on T is a stress field which satisfies the indefinite equilibrium equation divT* +b = 0 and is
free to assume arbitrary values on I.

Assume that the load (b,p) is regular enough to ensure that the following functions on I',

o) =&+ [ (x(s) = x()) x (b~ T s (31)

(o) = t(c) - /O "(p— T'R) ds, (32)

are such that y € C°(I',), and t is either in C°(I',) or is piecewise continuous over I',. In (30)~(32), o is the
arc length of I measured by some origin O, t is the unit tangent to I', and &; is the out-plane unit vector
such that {e, &,,e;} forms a right-handed basis.

The boundary value problem corresponding to the present situation can be expressed in the following
variational form

Find ¢, € H;(Q) such that

() = (pei}r[}f(g)@”’(@), (33)
where

7@ = {ocr@fo-p L= —conr,} (34)

6(0) =5 [ Ho- </Holda— 1(p), (39)
with

1) =~ [ (WHOWD) - (E+ AT} da -+ (WHOW )i ). (36)

(-,-), denoting the duality pairing between (H~'/2(I'))* and (H'/2(I'))*. Notice that, for a ¢ € H*(Q), the
tensor field WHoW? is in the space H (div, Q) = {T € (L2(Q))*/divT € (L*(Q))’}, as it is easily observed.
Thus, the trace of such a field on I exists and is an element of (H~"/2(I'))* (cf. Lions and Magenes, 1968;
Ciarlet, 1978).

In order to extend the LSM of Section 2.3, consider again a primal triangular mesh I1, over Q, a dual
polygonal mesh I,, and an extension T, form II, obtained by introducing external triangles in corres-
pondence with the portion I', of the boundary (Fig. 3). Let /, P and U indicate the sets of the indices of the
nodes of IT, which lie in the interior of Q, along I',, and along I',, respectively, and let Q' be the open region
covered by IT}.

Moreover, along I',, consider a piecewise linear interpolant fi of the function (31), and a piecewise
constant interpolant 7 of the function (32). The latter being such that its value over the generic edge of I', is
equal to the value of 7 in correspondence with the middle point.



6220 F. Fraternali et al. | International Journal of Solids and Structures 39 (2002) 6211-6240

ISa LT N s -
- S N -
. / S
g e St - LA @t i \
N N N N \
R R . . > ~ \
Nl N N e <
Y N Sl T T ST
1« .
Y N T ST ST
Ax 8
r v
u , , , ,
N N PR Lt JPERN PN 4 \/7
<, <, o <, v\
. . . . : !
4 N PR Lt MRS PN A Sy
<, <, <, (S S %
T | < N
e -1
l e N N N Sy ,>
, g -
S 3 n '
‘x2 \ > ) \
\ A ¥ ¥ r )
N g B
-7 .| P - /
\ > - //
X LT 7 T
N ZIaN
NIPEIN
O T
4

Fig. 3. Primal and dual meshes for a problem with mixed boundary conditions.

Upon introducing the following space of piecewise linear functions over II)

Sy = {p € C"(Q')/the restriction @, is linear for each triangle Q,, € IT},

~ . (37)

¢=ponl, Vo -n=—1overII,/II,},
a LSM for problem (33) can be formulated as follows

Find ¢, € S, such that
&1(@y) = inf &4(9), (38)
(PESph
where
~ 1 ~ ~ ~
619) =5 [ Wi+ /Hi)da— 1,5). (39)
Q
with
N £ ~ s
R X n ZS a(p N N
H,¢ = 2 iH—” h) @ h}; 40
! ; |Qn| s=1 2 6/’1 n ( )
~ aQAD ’ s = a(P S
Ih(9) =— = || 4 =D ux) Z k - (41)
& Oh dh
€xy, n nelU s=1

In (40) and (41), I'},..., 7" denote the edges of the primal mesh which are incident to x, and lie in the

interior of Q'; ¢ denotes the length of I'}; k“ and h‘Y respectively indicate the unit tangent and the unit
normal to I} (Flg 4). Moreover, [[0¢/ ah]] denotes the j jump of Vg - h through I'"; X the set of the edges
I (i.e., the skeleton of the primal mesh); and 4° the quantity defined by
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c.ne P

Fig. 4. Details of inner and boundary nodes of the primal mesh.

A=k ok - / (E+A[T])do. (42)

s
n

Thus, one can write &,(-) as follows

o~ -~ 1 = - st 6@ * aa ! aa ’ s = - 665 * 1S

wes s =2y x| g [[]] - S l[E] ez (S[E]5) @
where

o bro/h @k -h ek crAK ok] K ek

Ait:nn&{[n(g) n] n® n___n’n [n® n] n® n. (44)

4/Q,| 40,

3. Numerical implementation

Given a polyhedral stress function ¢ € S, each one of the slope jumps [[0¢/04]]) can be expressed as a
linear combination of the differences between the values of ¢ at the nodes connected to x,, and the value of

¢ at x,,. That is,

%11 I L,
H%H =3 @ - B,), s=1., S, (45)

n t=1

C*' being suitable & x %, coefficients (¥ = &, for n € I).



6222 F. Fraternali et al. | International Journal of Solids and Structures 39 (2002) 6211-6240

The use of (45) into (43) leads one to get

~ ... . R
En(®) =§F<p-¢—g-¢7 (46)

matrzx) and gisa vector of R
Thus, the minimizer ¢, of ﬁh( ) over S, corresponds with the solution ¢, of the linear system

Fp=g (47)

Eq. (47) defines the SFF of the LSM.

Observe that the calculation of F and g just requires sum and assembling operations, and not numerical
integrations. In particular, F has a highly sparse structure. This is also because each primal triangle requires
only three degrees of freedom (one per node), that is one half of the DOF required by a constant-strain
triangle of a standard (displacement-based) finite element model, and one sixth of the DOF required by a
T18 composite triangle (C' approximation of the stress function, cf. Oden and Carey, 1983a).

4. Truss analogy

The stress approximation induced by the SFF is of the form
T=T +T,0, (48)

where T, = WTH, W is a piecewise constant stress field associated to the polyhedral stress function
@ € Sy According to (40), the value of T, over the generic dual element £, is given by

Th@(n):ﬁiﬂ Haa(zf” Kok, (49)

The quantity [[0¢/0h]], dimensionally represents a force per unit thickness of the body. It can be
identified with the resultant of the normal stress o, = (T — T*)k' -k’ over the generic cross section of the
plane region Qs shown in Fig. 5.

Now, 1ntroduce an ideal truss structure %), having the same topology of the skeleton of the primal mesh
(the set X, of the interfaces I'¥ lying in the interior of ), and denote P! the axial force in the bar aligned
with I

Upon setting P¥(¢) = [[0¢/0h]]’ (Fig. 5), it is not difficult to verify that an arbitrary ¢ € S, generates a
set of balanced axial forces in 4, i.e., a set of forces such that

Z;:nl P,f(@):f, = 0, Vn € 17 (50)
S P(PK +Q, =0, VncP,
where
[[op. 09,
QnHaan antﬂ,; (51)

[[-]], denoting the jump of (-) across the external triangles incident to n (Fig. 4(c)). Clearly, the boundary
forces {Q,},p correspond to the surface tractions p — T*n over I',, (see Egs. (31), (32) and (37)). Eq. (49)
establishes a correspondence between the set of axial forces generated in %, by ¢ € S,;,, and the piecewise
continuous approximation of the stress field T, = T — T". It relates T, (n) with a weighted (tensorial)
sum of the axial forces intercepted by 2
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Fig. 5. Axial force P associated with a polyhedral stress function ¢.

The truss %, is supported in correspondence with the nodes lying on I',. For a given ¢ € S,;, the support
reactions balanced with P(¢) are given by (Fig. 4(b))

Sn
R,(§) =D P(§)kj, WneU. (52)
s=1

Now, let Ny denote the number of interfaces I, Ny the dimension of the set U, and P(¢) € R the vector
collecting scalar quantities P*(¢). According to Eq. (43), we can write

519) = 3P(§) - AP(§) + P(§) 4~ R(9) U, (53)
where

A is a Ny x Ny compliance matrix, obtained by assembling the quantities fifj defined as in (44);
A € R is the vector of the initial bar extensions, collecting the quantities 4° defined as in (42);
U € R*" is the vector of the prescribed nodal displacements u(x,) (n € U);

R(p) € RN is the vector of the support reactions, collecting the quantities R,.(®).

Thus, the relaxed energy &,(¢) can be interpreted as the complementary energy induced by the axial
forces Pi(¢) in the truss %,

It differs from the complementary energy of a real truss structure due to the form of the stress energy
1/2P- AP, which is defined per dual elements and not per bar elements. This energy couples the elastic
effects of the axial forces converging to the same node, in such a way that %, reproduces the behavior of the
continuous body as # — 0 (see the error estimates of Section 2.3 and the numerical results of Section 6). It is
worth noting that, in general, an analogous result cannot be obtained by replacing the body with a con-
ventional truss structure.
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5. Nodal displacement formulation

We want to show in this section that: (i) the stationary conditions of the relaxed energy (53) yield axial
forces in the truss %, which are compatible with a vector of nodal displacements U € R>*™~™J; (ij) such a
vector can be assumed as the independent variable of the LSM.

We begin observing that Eq. (50) can be written into the following matrix form

SP+Q=0, (54)

S being the static matrix of the truss %,, with 2(N + N,) rows and Ny columns. In (54), Q is the vector of
R2VN) with a couple of zero entries for each n € I, and two entries equal to the Cartesian components of
Q, for each n € P.

Similarly, Eq. (52) can be written as

R=-SP (55)

)

S being a second static matrix, with 2N, rows and N columns.
If the axial forces P are taken as primal variables of the LSM, the following constrained problem has to
be considered

(56)

PeR'r

minimize  &,(P) =iP-AP+P-4+SP-TU,
subject to SP+Q =0.

This can be addressed by searching for the stationary point (P, 4,) of the Lagrangian function
Zy(P,2) = &y(P) — - (SP +Q), (57)
where 4 € RV is the vector of the Lagrange multipliers. The optimality conditions of ZL,(P, 1) are
{ AP +4=S")— gTﬁ, (58)
SP+Q=0.

Recalling standard re§1T11ts about the kinematics of truss structures, it is easy to recognize that the ma-
trices C =S" and C =S’ rule the geometrical problem of 2,, that is, the search for the free nodal dis-
placements U € R*W ~No that solve the linear system

CU+CU= -4, (59)
for given U € R and 4 € R"".
Comparing (58); with (59) we can deduce that the solution P, is kinematically compatible with the
following nodal displacements and bar elongations

Uh = _;Lha
{Ah:APh+Z|. (60)

Therefore, we can rearrange our approximation scheme, assuming U as the independent variable and
searching for the solution of equilibrium equations (54) in the following set of axial forces

P=A'(CU+CU- 4), (61)
The substitution of (61) into (54) yields the linear system
KU+ q=0, (62)
where

K=C'A"'C (63)
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is the stiffness matrix of 24, and
q=Q+C'A'CU-C"A 4 (64)

is the nodal force vector.

The matrix equation (62) defines the nodal displacement formulation (NDF) of the LSM. It can be
usefully employed to analyze multiple-connected bodies (see the Example 6 of Section 6) and to integrate
the LSM with displacement-based procedures, such as standard finite element approximations. In parti-
cular, it allows one to treat body forces in a simple form since such forces can be directly assembled into q.
Notice that the NDF represents a displacement approach to a stress-based approximation of the 2D
problem, since it produces statically admissible solutions for each size of the discrete problem, as well as the
SFF.

Differing from the flexibility matrix F, the stiffness matrix K is generally dense.

6. Numerical results

Using the LSM we analyzed some significant problems of 2D elasticity, employing meshes with different
sizes and orientations.

A first group of problems (Examples 1-5) were analyzed by means of the SFF, through the following
steps:

(a) computation of the nodal values of the stress function by the sparse linear system Fp = g;
(b) computation of the approximating force network by the equations P¥ = [[0¢ /0h]];
(c) approximation of the stress field through the piecewise constant field T, such that

1 S
Tin) == > 2Pk o k);
h(n) |Q | = o & n

(d) computation of the nodal displacements of the truss %; by CU = AP + 4 — CU;
(e) smoothing of the discrete approximations through piecewise cubic interpolation and construction of
regularized functions ¢,, T, and u,.

In particular, the linear system of point (d) was worked out by calculating the Moore-Penrose gene-
ralized inverse of the rectangular matrix C (see, e.g., Campbell and Meyer, 1991). Smoothing of output data
and most of the graphic manipulations of the results were performed by Mathematica® (Wolfram, 1991).
Specific graphic software for managing the LSM (Rocchetta, 2000) was also used.

The final example (Example 6) concerns the NDF of the LSM. The following procedure was employed:

(a) computation of the compliance matrix A of the truss 2,

(b) inversion of A;

(c) computation of the stiffness matrix K = C'A ',

(d) solution of the linear system KU + q = 0;

(e) computation of the approximating force network by P = A (CU+CU — 4);

(f) construction of the piecewise constant stress approximation T;

(g) smoothing of the discrete approximations and construction of regularized functions T, and i,.

Use was made of primal and dual meshes satisfying the regularity properties discussed in Section 2.3.
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6.1. Examples 1, 2, 3—Convergence study

Fig. 6(a)—(c) show three sample problems of 2D elasticity, exhibiting “exact’ (or analytic) C* solutions.
The first deals with the traction problem of a wall-beam composed of an isotropic material. The second and
third refer instead to a traction problem and a displacement problem (simple shear) of a body composed of
an orthotropic material, whose symmetry axes (x|,x5) are rotated by 30° with respect to the Cartesian axes
(x1,x2).

P
Y
H @ G=1MPa || |
! v=14 |1
X
T T_fl’ ? L
|E i
T A T
;p_/¢5 L 3/2p1 1 L Il L | \3/2p1 }E/|5
_ el 3xpx,  9x)  xixy X,
@o 41 4L 100 L 50
EERERE
Hg%m I 1139p
ogelp [[ [T ———— 0722 p
o) Er=435MPa | | I e E;=4.35MPa
T Ey=0.98 MPa T E»=0.98 MPa
G =0.36 MPa G2 =0.36 MPa
L t Vi =027 { Y Vi =027 i
: S |1 ’
! * 30° X
X2 k i 30°
T AX) T X 4
P f 1 -
| L . - 9 L :
' 2.2 I 3
9, =—pL’ (0.5 % -0.287 x‘sz] 0, = (0.0424x2 +0.1268x2 —0.2327x,x, ) E,y

Fig. 6. (a)-(c) Examples 1-3 analyzed by the LSM and corresponding exact solutions for the Airy function.
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For each of these problems, we performed a numerical convergence study of the LSM for decreasing
values of the mesh size /. Triangulations generated by equally spaced grids of nodes were adopted as primal
meshes. We recall that the use of such meshes ensures a O(%)-convergence of the LSM in the case of traction
problems (cf. Section 2.3).

Fig. 7(a)-(c) show the polyhedral stress functions ¢, and the deformed shapes exhibited by the
LSM when a 10 x 10 mesh is employed. Figs. 8-10 instead show a comparison between the contours of

Fig. 7. (a)-(c) Polyhedral stress functions (/eft) and deformed shapes (right) given by the LSM (SFF) for the Examples 1 (zop), 2
(middle), and 3 (bottom). (—-—--) h = 0.25L (25 DOF); (-——-) h =0.10L (121 DOF); (------- ) h = 0.05L (441 DOF); (—) exact
solution.
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Fig. 8. Convergence of LSM solutions (SFF) for the Example 1. (—-—-— ) h = 0.25L (25 DOF); (———-) h = 0.10L (121 DOF); (------- )
h = 0.05L (441 DOF); (—) exact solution.

the approximating functions ¢, 1~",,“, 7“;,12, Thzz and the contours of the exact solutions, for three differ-
ent values of 4. Convergence of LSM approximations can be observed. In particular, it is seen that the
orientation of the primal mesh influences the quality of the approximation only in the case of coarse
meshes.

In Fig. 11 we plotted the correlation between the approximation errors

o = @1 = @oll, o — [ITx @5 = Tollg
b loollase ’ 100400
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¢/pL? T11/pP
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Fig. 9. Convergence of LSM solutions (SFF) for the Example 2. (—-—-— ) h=025L; (———-) h = 0.10L; Ty, = — @y, = 0.2327E,y;
(------- ) h = 0.05L; (—) exact solution.

and the dimensionless mesh size #/H (H = /2L = diameter of the body), T, being the stress associated with
the exact solution ¢,. We found linear convergence of the stress function (with respect to the H'(Q)-norm
of ¢,) (Fig. 11(a)). In the first two examples (Fig. 11(b), left), the stress field exhibited the same convergence
order (with respect to the L?(£2)-norm of T,). While, in the third example, the convergence order of T, was
found to be slightly less than one (Fig. 11(b), right). We recorded an approximation error of the stress field
in correspondence with the corner nodes of the mesh, which do not satisfy the (#x) property discussed in
Section 2.3 (Fig. 10, right). This inconvenience can be tackled by extrapolating the stress distribution over
the adjacent dual polygons.
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Fig. 10. Convergence of LSM solutions (SFF) for the Example 3 in the terms of the Airy function ¢ (leff), and LSM distribution of the
stress 71, for a 10 x 10 mesh (2 = 0.10L — 121 DOF, right). (—) Example 1; (------- ) Example 2; (———-) Example 3.
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6.2. Example 4—Flamant’s problem

Fig. 12 illustrates the classical 2D problem of a concentrated vertical load ¢ (per unit thickness) acting on
a horizontal straight boundary of an infinitely large plate (Flamant’s problem). The exact solution of this
problem (see, e.g., Fung, 1965) allows for a discontinuity in the slope of the stress function in corres-
pondence with the point-load (Fig. 12, bottom). In polar coordinates (r,}), the only non-zero stress
component is 7,., whose contours are circles tangent to the boundary (Fig. 12, top). We reduced the
problem to a rectangular domain by applying boundary tractions derived from the exact solution.

The LSM is particularly suitable for Flamant’s problem; it can easily reproduce the fold in stress
function graph in correspondence with the point-load (Fig. 13). Either successive refinements of a fixed
mesh geometry (Fig. 14), and different mesh topologies (Fig. 15) were employed.

6.3. Example 5—Slit-like crack loaded in tension
In order to deepen the particular ability of the LSM in problems with stress singularities, we considered
the traction problem of an infinite isotropic plate with a slit-like crack loaded in tension (Fig. 16). We

compared the exact solution (cf. Anderson, 1994) with two different LSM approximations and a finite
element solution. The latter was obtained through SAP2000®, employing a 15 x 15 mesh of shell elements

L 2 A L

Ty,, contours

__2gcost®
nr

0, =-9 1 9send
T

Fig. 12. Flamant’s problem—Exact solutions for the radial stress and the stress function.



6232 F. Fraternali et al. | International Journal of Solids and Structures 39 (2002) 6211-6240

Fig. 13. Polyhedral stress function and deformed shape for the Flamant problem (4 = 0.10L). (—-—-— ) h=0.25L; (———-) h =0.10L;
[C—— ) h = 0.05L; (—) exact solution.
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Fig. 14. Convergence of LSM solutions (SFF) for the Flamant problem.

(450 DOF) over a square side 2.5 times larger than the crack length a. As in the previous example, the
problem was reduced to a finite domain by applying boundary forces corresponding to the exact solution.
Regarding the LSM, two meshes of equal size (441 DOF) and different orientations were employed.

The results in Fig. 16 show that the LSM fits the exact stress distribution near the crack tip better than
the examined finite element model, even involving a lower number of degrees of freedom. The discrete force
networks corresponding to the LSM approximations are shown in Fig. 17.

6.4. Example 6—A shear wall with openings interacting with a frame

The last problem we dealt with in this work concerns with a structural system formed by a shear
wall with openings and a moment resisting frame, subjected to the combined action of vertical and
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Fig. 15. (a)—(c) Piecewise constant approximation of the radial stress 7,,L/q for the Flamant problem and three different LSM meshes
((—) exact contours).
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horizontal loads (Fig. 18). Material properties of reinforced concrete and hinged connections were con-
sidered.

Such a system exhibits a complex mechanical behavior, which is characterized by the effects of stress
concentration nearby the connections points and the sharp edges of the wall. The LSM describes the entire
system by a collection of 1D elements and allows the user to obtain stress resultants and moments over any
structural section of the wall. Indeed, such quantities can be easily computed by summing the contributions
due to the axial forces which are intercepted by the generic section.

We analyzed the problem with the NDF of the LSM referring to the primal mesh shown in Fig. 18. We
also computed a FEM approximation (SAP2000, 1997), using a mesh of shell elements with the same
number of nodes.

Fig. 19 shows the deformed configuration and the force network of the wall given by the LSM. Fig. 20
instead shows the maps of the Cartesian stress components corresponding to both LSM and FEM solu-
tions. Finally, Fig. 21 shows the normal forces, shear forces and bending moments post-computed from the
LSM force network in correspondence with several significant sections of the wall, such as the ending
sections of the coupling beams and the wall “legs”. The LSM ensures that these quantities are balanced
with the external loads. Concerning the results in Fig. 20, we can notice a general agreement between LSM
and FEM provisions for the stress field, with only small differences essentially at singular points of the wall
boundary. In terms of nodal displacements, we recorded a maximum gap of the order of 3% between LSM
and FEM results.

7. Closure

In this work we have presented and numerically tested a new method for approximating plane elastic
problems, which we refer to as the LSM. Analysis is focused on small deformations of plane continua
composed of a generally anisotropic material.
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Fig. 19. LSM deformed shape and force network for the wall (NDF).
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Fig. 20. (a) LSM (NDF) and FEM maps of the stress component 75, within the wall for an equal number of nodes. (b, c) LSM (NDF)
and FEM maps of the stress components 7}; and 7}, within the wall for an equal number of nodes.
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Fig. 21. Axial forces (kN), shear forces (kN) and bending moments (kNm) post-computed from the LSM force network over selected
structural sections of the walls.

A crucial feature of this new numerical approach is that it represents an unconstrained, stress based,
variational approximation of the boundary value problem.

The LSM, although conceptually more complex than traditional finite element schemes, is easy to im-
plement, and its SFF requires only one degree of freedom per node. The accuracy of the method has been
illustrated in several examples.

The LSM also has another appeal: it furnishes a rational way to approximate a continuous body with a
latticed structure, thus resolving a familiar problem for structural designers. Due to the form of the con-
stitutive relations, such a truss structure is not conventional.

Its advantages over other traditional approximation techniques, such as the finite element method, are
several. In particular:
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(a) since singularities are latent in the approximation, the LSM is well suited to treat equilibrium problems
with discontinuities and singularities in the geometry or in the data, such as those arising in crack prob-
lems and in composite structures;

(b) due to the modeling of a continuum by a latticed structure, the method naturally allows for describing
elastic structures composed of both two dimensional and one dimensional elements;

(c) the LSM yields statically admissible stresses and stress resultants at any stage of mesh refinement, as
opposed to displacements-based approximation methods;

(d) computation of the compliance (or stiffness) matrix does not require numerical integration.

Nevertheless, in order to maintain the physical significance of the method, it is not possible to enlarge the
approximation space of the stress function to include polynomials of order greater than one. Furthermore,
in the NDF the stiffness matrix is generally dense.

The present work is open to significant developments such as:

(1) enlargement of the numerical testing by adopting different mesh topologies;

(ii) extension to 3D problems;

(iii) application to boundary value problems with constraints on the stress field, such as problems involving
no-tension and elastic—plastic materials;

(iv) development of a mixed approach to the discrete problem to combine the stress function with the
NDFs;

(v) inclusion in the LSM of a procedure for the optimization of topology and geometry of the mesh, es-
pecially in presence of stress constraints;

(vi) implementation of a convex hull technique to approximate the stress function of a no-tension (or ma-
sonry-like) body by a concave polyhedra (cf. Giaquinta and Giusti, 1985; Angelillo and Rosso, 1995;
Avis and Fukuda, 1992).
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